Section 4.5 L'Hôpital's Rule and Indeterminate Forms

(1) Refresher: Determinate and Indeterminate Forms
 (2) L'Hôpital's Rule
 (3) Comparing Growth of Functions

The Form of a Limit

The **form** of a limit $\lim_{x\to c} \square$ is the expression resulting from substituting x = c into \square .

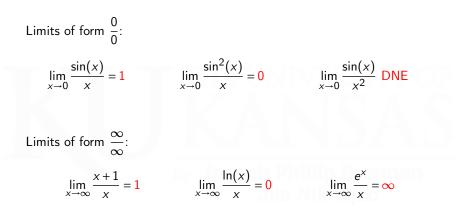
The form of a limit is **not** the same as its value! It is a **tool for inspecting** the limit.

 $\lim_{x \to 0} x^{\arctan(x)} : \text{ form } 0^0 \qquad \lim_{x \to \infty} (1+x)^{\frac{1}{x}} : \text{ form } \infty^0$ $\lim_{x \to 0} \cos(x)^{\frac{1}{x}} : \text{ form } 1^\infty \qquad \lim_{x \to 0^+} \ln(x)\sin(x) : \text{ form } 0 \cdot \infty$

Indeterminate Forms are called indeterminate because they represent limits which may or may not exist and may be equal to any value. The form itself does **not** indicate the value of the limit. There are 7 indeterminate forms.

 $+0\cdot\infty$ ∩0

Indeterminate Forms



These two indeterminate forms are like "tugs-of-war" between the numerator and denominator. Which of the two grows faster?

L'Hôpital's Rule

L'Hôpital's Rule

If f and g are differentiable near x = a and either

(i)
$$\lim_{x \to a} f(x) = 0$$
 and $\lim_{x \to a} g(x) = 0$, or
(ii) $\lim_{x \to a} f(x) = \pm \infty$ and $\lim_{x \to a} g(x) = \pm \infty$,

then

$$\lim_{x\to a}\frac{f(x)}{g(x)} = \lim_{x\to a}\frac{f'(x)}{g'(x)}.$$

The rule applies equally for one-sided limits.

Example 1:

These limits are of form 0/0. The steps marked $\stackrel{LHR}{=}$ use L'Hôpital's Rule.

(a)
$$\lim_{x \to 0} \frac{\sin(x)}{x}$$

 $\stackrel{LHR}{=} \lim_{x \to 0} \frac{\frac{d}{dx}(\sin(x))}{\frac{d}{dx}(x)} = \lim_{x \to 0} \frac{\cos(x)}{1} = \cos(0) = 1$
(b) $\lim_{x \to 0} \frac{\ln(x^2 + 1)}{x}$
 $\stackrel{LHR}{=} \lim_{x \to 0} \frac{\frac{2x}{x^2 + 1}}{1} = 0$
(c) $\lim_{x \to 2} \frac{x^4 + 2x - 20}{x^3 - 8}$
 $\stackrel{LHR}{=} \lim_{x \to 2} \frac{4x^3 + 2}{3x^2} = \frac{17}{6}$

Example 2:

These limits are of form $\frac{\infty}{\infty}$. The steps marked $\stackrel{LHR}{=}$ use L'Hôpital's Rule.

Example 3:

Sometimes it is necessary to perform L'Hôpital's Rule multiple times.

(a)
$$\lim_{x \to 0} \frac{e^x - x - 1}{\cos(x) - 1} (0/0) = \lim_{x \to 0} \frac{e^x - 1}{-\sin(x)} (0/0)$$

= $\lim_{x \to 0} \frac{e^x}{-\cos(x)}$ (determinate) = -1.

$$(b) \lim_{x \to \infty} \frac{-3x^3 - 20x^2}{2x^3 + x + 7} (\infty/\infty) = \lim_{x \to \infty} \frac{-9x^2 - 40x}{6x^2 + 1} (\infty/\infty)$$
$$= \lim_{x \to \infty} \frac{-18x - 40}{12x} (\infty/\infty)$$
$$= \lim_{x \to \infty} \frac{-18}{12} = \begin{bmatrix} -\frac{3}{2} \end{bmatrix}$$

L'Hôpital's Rule: Warnings

Warning #1:

L'Hôpital's Rule only applies to the indeterminate forms 0/0 and ∞/∞ . Before applying L'Hôpital's Rule to a limit, verify that it is of one of those two forms.

Warning #2:

Don't confuse L'Hôpital's Rule with the Quotient Rule! They have completely different uses.

- L'Hôpital's Rule is for evaluating limits.
- The Quotient Rule is for evaluating derivatives.

The Form $\infty - \infty$

To evaluate limits with the form $\infty - \infty$, use algebra to rewrite the expression as a quotient, often in 0/0 or ∞/∞ form. Often this means finding a common denominator.

Example 4: To evaluate $\lim_{x\to 0^+} \left(\frac{1}{x} - \csc(x)\right)$, which has the form $\infty - \infty$, rewrite it:

$$\frac{1}{x} - \csc(x) = \frac{1}{x} - \frac{1}{\sin(x)} = \frac{\sin(x) - x}{x\sin(x)}$$

This is an 0/0 form, so we can apply L'Hôpital's Rule:

$$\lim_{x \to 0^+} \frac{\sin(x) - x}{x \sin(x)} \stackrel{LHR}{=} \lim_{x \to 0^+} \frac{\cos(x) - 1}{x \cos(x) + \sin(x)} (0/0)$$
$$\stackrel{LHR}{=} \lim_{x \to 0^+} \frac{-\sin(x)}{-x \sin(x) + 2\cos(x)} = 0$$

The Form $0 \cdot \infty$

Limits with the form $0 \cdot \infty$ can easily be converted to 0/0 or ∞/∞ form. If $\lim_{x \to a} f(x) = 0$ and $\lim_{x \to a} g(x) = \infty$, then

$$\lim_{x \to a} \underbrace{f(x)g(x)}_{0 \text{ or form}} = \lim_{x \to a} \underbrace{\frac{f(x)}{\left(\frac{1}{g(x)}\right)}}_{0/0 \text{ form}} = \lim_{x \to a} \underbrace{\frac{g(x)}{\left(\frac{1}{f(x)}\right)}}_{\infty/\infty \text{ form}}$$

Examples (5):

(a)
$$\lim_{x \to 0^+} x \ln(x) = \lim_{x \to 0^+} \frac{\ln(x)}{\frac{1}{x}} \stackrel{LHR}{=} \lim_{x \to 0^+} \frac{\frac{1}{x}}{-\frac{1}{x^2}} = 0$$

(b)
$$\lim_{x \to \frac{\pi}{2}^{-}} \left(x - \frac{\pi}{2}\right) \tan(x) = \lim_{x \to \frac{\pi}{2}^{-}} \frac{x - \frac{\pi}{2}}{\cot(x)} \stackrel{LHR}{=} \lim_{x \to \frac{\pi}{2}^{-}} \frac{1}{-\csc^{2}(x)} = \boxed{-1}$$

For limits of the forms 1^{∞} , 0^{0} , or ∞^{0} , the key step is to rewrite

$$\lim_{n \to c} \blacksquare = \lim_{x \to c} e^{\ln(\blacksquare)} = \lim_{x \to c} \exp(\ln(\blacksquare)) = \exp\left(\lim_{x \to c} \ln(\blacksquare)\right).$$

- The second equality is valid by the Limit Laws (see §2.4) because e^x is continuous everywhere.
- The "exp" notation avoids humongous expressions in superscript.

This technique changes the limit into one of form $0 \cdot \infty$:

x

Example 6: $\lim_{x \to 0^+} x^x$ has the indeterminate form 0^0 .

x

$$\lim_{x \to 0^+} x^x = \exp\left(\lim_{x \to 0^+} \ln(x^x)\right)$$

= $\exp\left(\lim_{x \to 0^+} x \ln(x)\right) \quad (0 \cdot \infty)$
= $\exp\left(\lim_{x \to 0^+} \frac{\ln(x)}{\frac{1}{x}}\right) \quad (\infty/\infty)$
$$\stackrel{LHR}{=} \exp\left(\lim_{x \to 0^+} \frac{1/x}{-1/x^2}\right) = \exp\left(\lim_{x \to 0^+} (-x)\right)$$

$$= \exp(0) = \boxed{1.}$$

Example 7: $\lim_{x\to 0^+} (-\ln(x))^x$ has the indeterminate form ∞^0 .

$$\lim_{x \to 0^{+}} (-\ln(x))^{x} = \exp\left[\lim_{x \to 0^{+}} \ln((-\ln(x))^{x})\right]$$

= $\exp\left[\lim_{x \to 0^{+}} x \ln(-\ln(x))\right]$
= $\exp\left[\lim_{x \to 0^{+}} \frac{\ln(-\ln(x))}{1/x}\right]$ (∞/∞)
$$\frac{LHR}{=} \exp\left[\lim_{x \to 0^{+}} \frac{\frac{1}{-\ln(x)} \cdot \frac{-1}{x}}{\frac{-1}{x^{2}}}\right] = \exp\left[\lim_{x \to 0^{+}} \frac{-x}{\ln(x)}\right]$$

 $= \exp(0) = 1.$

Example 8: Let *a* be any real number, so that $\lim_{x\to 0} (1+ax)^{1/x}$ has the indeterminate form 1^{∞} .

$$\lim_{x \to 0} (1+ax)^{1/x} = \exp\left[\lim_{x \to 0^+} \ln\left((1+ax)^{1/x}\right)\right]$$
$$= \exp\left[\lim_{x \to 0^+} \frac{\ln(1+ax)}{x}\right] \quad (0/0)$$
$$\underset{=}{\overset{LHR}{=}} \exp\left[\lim_{x \to 0^+} \frac{\frac{1}{1+ax}}{1}\right] = \boxed{e^a}.$$

In fact, this calculation can be used to define the number e:

$$e = \lim_{x \to 0} (1+x)^{1/x}.$$

Comparing Growth Of Functions

Some important cases (that can all be checked using L'Hôpital's Rule):

ona mintre

- (a) $x^n \ll e^x$ for all n.
- (b) In fact, $x^n \ll a^x$ for all *n* and all a > 1.
- (c) $\log_a(x) \ll x^n$ for all *n* and all a > 0.

Indeterminate Forms Involving Trigonometric Functions

Example 9: $\lim_{x\to 0} \frac{\tan(x)\sin(5x)}{x\sin(7x)}$ has the indeterminate form $\frac{0}{6}$. $\lim_{x \to 0} \frac{\tan(x)\sin(5x)}{x\sin(7x)} = \lim_{x \to 0} \left[\left(\frac{1}{\cos(x)}\right) \left(\frac{\sin(x)}{x}\right) \left(\frac{\sin(5x)}{\sin(7x)}\right) \right]$ Limit of each fraction exists. $= \lim_{x \to 0} \left(\frac{1}{\cos(x)} \right) \lim_{x \to 0} \left(\frac{\sin(x)}{x} \right) \lim_{x \to 0} \left(\frac{\sin(5x)}{\sin(7x)} \right)$ $\lim_{x \to 0} \left(\frac{\cos(x)}{1} \right) \lim_{x \to 0} \left(\frac{5\cos(5x)}{7\cos(7x)} \right)$ $=\frac{5}{7}$

